//

Páginas

domingo, 24 de abril de 2011

Cableado Estructurado

         En el clima actual de los negocios, el tener un sistema confiable de cableado para comunicaciones es tan importante como tener un suministro de energía eléctrica en el que se pueda confiar, por lo tanto es el  fundamento de cualquier sistema de información. Diez años atrás, el único cable utilizado en las "redes" de cableado de edificios, era el cable tipo POTS, o cable regular para teléfono, instalado por la compañía de teléfonos local. El conjunto de cables POTS era capaz de manejar comunicaciones de voz, pero para poder apoyar las comunicaciones de datos, se tenía que instalar un segundo sistema privado de cables. Hasta no hace mucho, los sistemas privados independientes eran aceptables. Pero, en el mercado actual ávido de información, el poder proveer de comunicaciones de voz y de datos por intermedio de un sistema de cableado estructurado universal es un requisito básico de los negocios. Además, ya que la comunicación en redes se hace más compleja, - más usuarios comparten dispositivos periféricos, se efectúan más tareas de misión crítica sobre las redes, y crece la necesidad de acceso más rápido a la información -, más importante se vuelve entonces una buena infraestructura para esas redes. El primer paso necesario hacia la adaptabilidad, flexibilidad, y longevidad de las redes actuales, comienza con el cableado estructurado.

Es vital que el cableado de comunicaciones sea capaz de soportar una variedad de aplicaciones, y dure lo que dura la vida de una red. Si ese cableado es parte de un sistema bien diseñado de cableado estructurado, esto permite la fácil administración de traslados, adiciones, y cambios, así como una migración transparente a nuevas topologías de red. Por otra parte, los sistemas de "preocúpese hasta que lo necesite", hacen un problema de los traslados, cambios, y adiciones, y hacen difícil la implantación de nuevas topologías de red. Los problemas con la red ocurren más frecuentemente, son más difíciles de localizar, y tardan más en resolverse. Cuando las comunicaciones de los sistemas fallan, los empleados y los activos de las empresas se paralizan, causando pérdida de ingresos y ganancias. Aún peor, la imagen ante clientes y proveedores puede afectarse adversamente.

¿Qué es un sistema de cableado? 

Un sistema de cableado da soporte físico para la transmisión de las señales asociadas a los sistemas de voz, telemáticos y de control existentes en un edificio o conjunto de edificios (campus). Para realizar esta función un sistema de cableado incluye todos los cables, conectores, repartidores, módulos, etc. necesarios.

Un sistema de cableado puede soportar de manera integrada o individual los siguientes sistemas:

  • Sistemas de voz     
·         Centralitas (PABX), distribuidores de llamadas (ACD)

·         Teléfonos analógicos y digitales, etc.

  • Sistemas telemáticos
                  ·         Redes locales

·         Conmutadores de datos

·         Controladores de terminales

·         Líneas de comunicación con el exterior, etc.

  • Sistemas de Control     
·         Alimentación remota de terminales

·         Calefacción, ventilación, aire acondicionado, alumbrado, etc.

·         Protección de incendios e inundaciones, sistema eléctrico, ascensores

·         Alarmas de intrusión, control de acceso, vigilancia, etc.

En caso de necesitarse un sistema de cableado para cada uno de los servicios, al sistema de cableado se le denomina específico; si por el contrario, un mismo sistema soporta dos o más servicios, entonces se habla de cableado genérico.

El resto de esta guía se limita a los Sistemas de Cableado genéricos debido a la mayor flexibilidad que ofrecen respecto a soluciones específicas. Esta guía tampoco incluye comunicaciones inalámbricas por no utilizar un soporte físico (cobre, fibra óptica) para la transmisión.

Tipos de cables


El funcionamiento del sistema cableado deberá ser considerado no sólo cuando se están apoyando  necesidades actuales sino también cuando se anticipan necesidades futuras. Hacer esto permitirá la migración a aplicaciones de redes más rápidas sin necesidad de incurrir en costosas actualizaciones de sistema de cableado. Los cables son el componente básico de todo sistema de cableado existen diferentes tipos de cables. La elección de uno respecto a otro depende del ancho de banda necesario, las distancias existentes y el coste del medio.

Cada tipo de cable tiene sus ventajas e inconvenientes; no existe un tipo ideal. Las principales diferencias entre los distintos tipos de cables radican en la anchura de banda permitida (y consecuentemente en el rendimiento máximo de transmisión), su grado de inmunidad frente a interferencias electromagnéticas y la relación entre la amortiguación de la señal y la distancia recorrida.

En la actualidad existen básicamente tres tipos de cables factibles de ser utilizados para el cableado en el interior de edificios o entre edificios:

·         Coaxial
                  ·         Par Trenzado (2 pares)
·         Par Trenzado (4 pares)
·         Fibra Óptica

(De los cuales el cable Par Trenzado(2 y 4 pares)  y la Fibra Óptica son reconocidos  por la norma ANSI/TIA/EIA-568-A  y el Coaxial se acepta pero no se recomienda en instalaciones nuevas)

A continuación se describen las principales características de cada tipo de cable, con especial atención al par trenzado y a la fibra óptica por la importancia que tienen en las instalaciones actuales, así como su implícita recomendación por los distintos estándares asociados a los sistemas de cableado.

            Cable Coaxial 
           
            Este tipo de cable esta compuesto de un hilo conductor central de cobre rodeado por una malla de hilos de cobre. El espacio entre el hilo y la malla lo ocupa un conducto de plástico que separa los dos conductores y mantiene las propiedades eléctricas. Todo el cable está cubierto por un aislamiento de protección para reducir las emisiones eléctricas. El ejemplo más común de este tipo de cables es el coaxial de televisión.

Originalmente fue el cable más utilizado en las redes locales debido a su alta capacidad y resistencia a las interferencias, pero en la actualidad su uso está en declive.

Su mayor defecto es su grosor, el cual limita su utilización en pequeños conductos eléctricos y en ángulos muy agudos.

Existen dos tipos de cable coaxial:

  • Thick (grueso). Este cable se conoce normalmente como "cable amarillo", fue el cable coaxial utilizado en la mayoría de las redes. Su capacidad en términos de velocidad y distancia es grande, pero el coste del cableado es alto y su grosor no permite su utilización en canalizaciones con demasiados cables. Este cable es empleado en las redes de área local conformando con la norma 10 Base 2. 
  • Thin (fino). Este cable se empezó a utilizar para reducir el coste de cableado de la redes. Su limitación está en la distancia máxima que puede alcanzar un tramo de red sin regeneración de la señal. Sin embargo el cable es mucho más barato y fino que el thick y, por lo tanto, solventa algunas de las desventajas del cable grueso. Este cable es empleado en las redes de área local conformando con la norma 10 Base 5.
          Par Trenzado

Es el tipo de cable más común y se originó como solución para conectar teléfonos, terminales y ordenadores sobre el mismo cableado, ya que está habilitado para comunicación  de datos permitiendo frecuencias más altas transmisión. Con anterioridad, en Europa, los sistemas de telefonía empleaban cables de pares no trenzados.

Cada cable de este tipo está compuesto por una serie de pares de cables trenzados. Los pares se trenzan para reducir la interferencia entre pares adyacentes. Normalmente una serie de pares se agrupan en una única funda de color codificado para reducir el número de cables físicos que se introducen en un conducto. El número de pares por cable son 4, 25, 50, 100, 200 y 300. Cuando el número de pares es superior a 4 se habla de cables multipar.

Tipos de cables de par trenzado:

  • No blindado. Es el cable de par trenzado normal y se le referencia por sus siglas en inglés UTP (Unshield Twiested Pair; Par Trenzado no Blindado). Las mayores ventajas de este tipo de cable son su bajo costo y su facilidad de manejo. Sus mayores desventajas son su mayor tasa de error respecto a otros tipos de cable, así como sus limitaciones para trabajar a distancias elevadas sin regeneración.
Para las distintas tecnologías de red local, el cable de pares de cobre no blindado se ha convertido en el sistema de cableado más ampliamente utilizado.
El estándar EIA-568 en el adendum TSB-36 diferencia tres categorías distintas para este tipo de cables.
                ·         Categoría 3: Admiten frecuencias de hasta 16 Mhz 
                ·         Categoría 4: Admiten frecuencias de hasta 20 Mhz
                   ·         Categoría 5: Admiten frecuencias de hasta 100 Mhz

Las características generales del cable no blindado son:

·         Tamaño: El menor diámetro de los cables de par trenzado no blindado permite aprovechar más eficientemente las canalizaciones y los armarios de distribución. El diámetro típico de estos cables es de 0'52 m

·         Peso: El poco peso de este tipo de cable con respecto a los otros tipos de cable facilita el tendido.

·         Flexibilidad: La facilidad para curvar y doblar este tipo de cables permite un tendido más rápido así como el conexionado de las rosetas y las regletas.

·         Instalación: Debido a la amplia difusión de este tipo de cables, existen una gran variedad de suministradores, instaladores y herramientas que abaratan la instalación y puesta en marcha.

·         Integración: Los servicios soportados por este tipo de cable incluyen:

·         Red de Area Local ISO 8802.3 (Ethernet) y ISO 8802.5 (Token Ring)

·         Telefonía analógica

·         Telefonía digital

·         Terminales síncronos

·         Terminales asíncronos

·         Líneas de control y alarmas

  • Blindado. Cada par se cubre con una malla metálica, de la misma forma que los cables coaxiales, y el conjunto de pares se recubre con una lámina blindada. Se referencia frecuentemente con sus siglas en inglés STP (Shield Twiested Pair, Par Trenzado blindado).
          El empleo de una malla blindada reduce la tasa de error, pero incrementa el coste al requerirse un proceso de fabricación más costoso.

  • Uniforme. Cada uno de los pares es trenzado uniformemente durante su creación. Esto elimina la mayoría de las interferencias entre cables y además protege al conjunto de los cables de interferencias exteriores. Se realiza un blindaje global de todos los pares mediante una lámina externa blindada. Esta técnica permite tener características similares al cable blindado con unos costes por metro ligeramente inferior.
         Fibra Óptica

Este cable está constituido por uno o más hilos de fibra de vidrio. Cada fibra de vidrio consta de:

  • Un núcleo central de fibra con un alto índice de refracción.
  • Una cubierta que rodea al núcleo, de material similar, con un índice de refracción ligeramente menor.
  • Una envoltura que aísla las fibras y evita que se produzcan interferencias entre fibras adyacentes, a la vez que proporciona protección al núcleo. Cada una de ellas está rodeada por un revestimiento y reforzada para proteger a la fibra.

La luz producida por diodos o por láser, viaja a través del núcleo debido a la reflexión que se produce en la cubierta, y es convertida en señal eléctrica en el extremo receptor.

La fibra óptica es un medio excelente para la transmisión de información debido a sus excelentes características: gran ancho de banda, baja atenuación de la señal, integridad, inmunidad a interferencias electromagnéticas, alta seguridad y larga duración. Su mayor desventaja es su coste de producción superior al resto de los tipos de cable, debido a necesitarse el empleo de vidrio de alta calidad y la fragilidad de su manejo en producción. La terminación de los cables de fibra óptica requiere un tratamiento especial que ocasiona un aumento de los costes de instalación.

Uno de los parámetros más característicos de las fibras es su relación entre los índices de refracción del núcleo y de la cubierta que depende también del radio del núcleo y que se denomina frecuencia fundamental o normalizada; también se conoce como apertura numérica y es adimensional. Según el valor de este parámetro se pueden clasificar los cables de fibra óptica en dos clases:

  • Modo Simple(o Unimodal). Cuando el valor de la apertura numérica es inferior a 2'405, un único modo electromagnético viaja a través de la línea, es decir, una sola vía y por tanto ésta se denomina Modo Simple.

     Este tipo de fibra necesita el empleo de emisores láser para la inyección de la luz, lo que proporciona un gran ancho de banda y una baja atenuación con la distancia, por lo que son utilizadas en redes metropolitanas y redes de área extensa. Resultan más caras de producir y el equipamiento es más sofisticado.

  • Multimodo. Cuando el valor de la apertura numérica es superior a 2'405, se transmiten varios modos electromagnéticos por la fibra, denominándose por este motivo fibra multimodo.

Las fibras multimodo son las más utilizadas en las redes locales por su bajo coste. Los diámetros más frecuentes 62'5/125 y 100/140 micras. Las distancias de transmisión de este tipo de fibras están alrededor de los 2'4 kms. y se utilizan a diferentes velocidades: 10 Mbps, 16 Mbps y 100 Mbps.

Las características generales de la fibra óptica son:

  • Ancho de banda. La fibra óptica proporciona un ancho de banda significativamente mayor que los cables de pares (blindado/no blindado) y el Coaxial. Aunque en la actualidad se están utilizando velocidades de 1,7 Gbps en las redes públicas, la utilización de frecuencias más altas (luz visible) permitirá alcanzar los 39 Gbps.
El ancho de banda de la fibra óptica permite transmitir datos, voz, vídeo, etc.

  • Distancia. La baja atenuación de la señal óptica permite realizar tendidos de fibra óptica sin necesidad de repetidores.
  • Integridad de datos. En condiciones normales, una transmisión de datos por fibra óptica tiene una frecuencia de errores o BER (Bit Error Rate) menor de 10 E-11. Esta característica permite que los protocolos de comunicaciones de alto nivel, no necesiten implantar procedimientos de corrección de errores por lo que se acelera la velocidad de transferencia.
  • Duración. La fibra óptica es resistente a la corrosión y a las altas temperaturas. Gracias a la protección de la envoltura es capaz de soportar esfuerzos elevados de tensión en la instalación.
  • Seguridad. Debido a que la fibra óptica no produce radiación electromagnética, es resistente a la acciones intrusivas de escucha. Para acceder a la señal que circula en la fibra es necesario partirla, con lo cual no hay transmisión durante este proceso, y puede por tanto detectarse.

La fibra también es inmune a los efectos electromagnéticos externos, por lo que se puede utilizar en ambientes industriales sin necesidad de protección especial.

En el siguiente cuadro se presenta una comparativa de los distintos tipos de cables descritos.



Par Trenzado

No
Par Trenzado Blindado
Coaxial
Fibra Óptica
Teconología ampliamente probada
Si
Si
Si
Si
Ancho de banda
Medio
Medio
Alto
Muy Alto
Hasta 1 Mhz
Si
Si
Si
Si
Hasta 10 Mhz
Si
Si
Si
Si
Hasta 20 Mhz
Si
Si
Si
Si
Hasta 100 Mhz
Si (*)
Si
Si
Si
27 Canales video
No
No
Si
Si
Canal Full Duplex
Si
Si
Si
Si
Distancias medias
100 m

65 Mhz
100 m

67 Mhz
500

(Ethernet)
2 km (Multi.)

100 km (Mono.)
Inmunidad Electromagnética
Limitada
Media
Media
Alta
Seguridad
Baja
Baja
Media
Alta
Coste
Bajo
Medio
Medio
Alto






(*) UTP Categoría 5

RENDIMIENTO DE CABLES SEGÚN ANCHO DE BANDA

Los sistemas de cableado de lugares utilizados para servicios de telecomunicaciones, han experimentado una constante evolución con el correr de los años. Los sistemas de cableado para teléfonos fueron en una oportunidad especificados e instalados por las compañías de teléfonos, mientras que el cableado para datos estaba determinado por los proveedores del equipo de computación. Después de la división de la compañía AT&T en los Estados Unidos, se hicieron intentos para simplificar el cableado, mediante la introducción de un enfoque más universal. A pesar de que estos sistemas ayudaron a definir las pautas relacionadas con el cableado, no fue sino hasta la publicación de la norma obre tendido de cables en edificios ANSI/EIA/TIA-568 en 1991, que estuvieron disponibles las especificaciones completas para guiar en la selección e instalación de los sistemas de cableado.
Puntos Claves a Tener en Cuenta
Este cableado que "cumple con las normas" está previsto para acomodar una amplia variedad de aplicaciones de sistemas (por ejemplo, voz, fax, módem, mainframe y LAN), utilizando un esquema de cableado universal. A pesar de que este enfoque ha simplificado los métodos de cableado y de la selección de los componentes, quedan todavía varios puntos claves que hay que tener en cuenta:
  • Requerimientos de funcionamiento y de ancho de banda
  • Aplicaciones en redes apoyadas
  • Costo durante la vida útil
  • Características del producto
  • Apoyo técnico y servicio
Estos puntos son importantes porque contemplan varios aspectos relacionados con la especificación, compra, y mantenimiento de un sistema de cableado. Recuerde estas preguntas cuando examina las secciones que siguen:
  • ¿Cuánto tiempo va a permanecer el sistema en uso?
  • ¿Qué demandas de funcionamiento y de aplicación se le impondrán al sistema?
  • ¿Existen requerimientos físicos especiales en el edificio que deberán ser considerados?
  • ¿Qué tipo de apoyo es necesario para el producto y el diseño?
A pesar de que las normas han avanzado lo suficiente para poner un poco de orden a los sistemas de cableado, estas consideraciones adicionales lo llevan un paso más allá para arribar a la selección de un sistema que es flexible, confiable, manejable y a prueba del futuro.

No hay comentarios:

Te ha sido de gran ayuda este Blog?

//